2025
ACM Transactions on Interactive Intelligent Systems
with Peter S. Park, Ezra Karger, Sean Trott, Philip E. Tetlock
+ Abstract
Large language models (LLMs) match and sometimes exceed human performance in many domains. This study explores the potential of LLMs to augment human judgment in a forecasting task. We evaluate the effect on human forecasters of two LLM assistants: one designed to provide high-quality (“superforecasting”) advice, and the other designed to be overconfident and base-rate neglecting, thus providing noisy forecasting advice. We compare participants using these assistants to a control group that received a less advanced model that did not provide numerical predictions or engage in explicit discussion of predictions. Participants (N 991) answered a set of six forecasting questions and had the option to consult their assigned LLM assistant throughout. Our preregistered analyses show that interacting with each of our frontier LLM assistants significantly enhances prediction accuracy by between 24% and 28% compared to the control group. Exploratory analyses showed a pronounced outlier effect in one forecasting item, without which we find that the superforecasting assistant increased accuracy by 41%, compared with 29% for the noisy assistant. We further examine whether LLM forecasting augmentation disproportionately benefits less skilled forecasters, degrades the wisdom-of-the-crowd by reducing prediction diversity, or varies in effectiveness with question difficulty. Our data do not consistently support these hypotheses. Our results suggest that access to a frontier LLM assistant, even a noisy one, can be a helpful decision aid in cognitively demanding tasks compared to a less powerful model that does not provide specific forecasting advice. However, the effects of outliers suggest that further research into the robustness of this pattern is needed.
2025
arXiv Preprint arXiv:2505.09662
with Francesco Salvi, Jiacheng Liu, Xiaoli Nan, Ramit Debnath, Barbara Fasolo, Evelina Leivada, Gabriel Recchia, Fritz Günther, Ali Zarifhonarvar, Joe Kwon, Zahoor Ul Islam, Marco Dehnert, Daryl Y. H. Lee, Madeline G. Reinecke, David G. Kamper, Mert Kobaş, Adam Sandford, Jonas Kgomo, Luke Hewitt, Shreya Kapoor, Kerem Oktar, Eyup Engin Kucuk, Bo Feng, Cameron R. Jones, Izzy Gainsburg, Sebastian Olschewski, Nora Heinzelmann, Francisco Cruz, Ben M. Tappin, Tao Ma, Peter S. Park, Rayan Onyonka, Arthur Hjorth, Peter Slattery, Qingcheng Zeng, Lennart Finke, Igor Grossmann, Alessandro Salatiello, Ezra Karger
+ Abstract
We directly compare the persuasion capabilities of a frontier large language model (LLM; Claude Sonnet 3.5) against incentivized human persuaders in an interactive, real-time conversational quiz setting. In this preregistered, large-scale incentivized experiment, participants (quiz takers) completed an online quiz where persuaders (either humans or LLMs) attempted to persuade quiz takers toward correct or incorrect answers. We find that LLM persuaders achieved significantly higher compliance with their directional persuasion attempts than incentivized human persuaders, demonstrating superior persuasive capabilities in both truthful (toward correct answers) and deceptive (toward incorrect answers) contexts. We also find that LLM persuaders significantly increased quiz takers' accuracy, leading to higher earnings, when steering quiz takers toward correct answers, and significantly decreased their accuracy, leading to lower earnings, when steering them toward incorrect answers. Overall, our findings suggest that AI's persuasion capabilities already exceed those of humans that have real-money bonuses tied to performance. Our findings of increasingly capable AI persuaders thus underscore the urgency of emerging alignment and governance frameworks.
2025
Communications Psychology
with Spencer Greenberg, Alexander Grishin, Lucius Caviola
+ Abstract
We assess the abilities of both specialized deep neural networks, such as PersonalityMap, and general LLMs, including GPT-4o and Claude 3 Opus, in understanding human personality by predicting correlations between personality questionnaire items. All AI models outperform the vast majority of laypeople and academic experts. However, we can improve the accuracy of individual correlation predictions by taking the median prediction per group to produce a “wisdom of the crowds” estimate. Thus, we also compare the median predictions from laypeople, academic experts, GPT-4o/Claude 3 Opus, and PersonalityMap. Based on medians, PersonalityMap and academic experts surpass both LLMs and laypeople on most measures. These results suggest that while advanced LLMs make superior predictions compared to most individual humans, specialized models like PersonalityMap can match even expert group-level performance in domain-specific tasks. This underscores the capabilities of large language models while emphasizing the continued relevance of specialized systems as well as human experts for personality research.
2024
Behavior Research Methods
with Peter S. Park, Chongyang Zhu
+ Abstract
We test whether large language models (LLMs) can be used to simulate human participants in social-science studies. To do this, we ran replications of 14 studies from the Many Labs 2 replication project with OpenAI’s text-davinci-003 model, colloquially known as GPT-3.5. Based on our pre-registered analyses, we find that among the eight studies we could analyse, our GPT sample replicated 37.5% of the original results and 37.5% of the Many Labs 2 results. However, we were unable to analyse the remaining six studies due to an unexpected phenomenon we call the “correct answer” effect. Different runs of GPT-3.5 answered nuanced questions probing political orientation, economic preference, judgement, and moral philosophy with zero or near-zero variation in responses: with the supposedly “correct answer.” In one exploratory follow-up study, we found that a “correct answer” was robust to changing the demographic details that precede the prompt. In another, we found that most but not all “correct answers” were robust to changing the order of answer choices. One of our most striking findings occurred in our replication of the Moral Foundations Theory survey results, where we found GPT-3.5 identifying as a political conservative in 99.6% of the cases, and as a liberal in 99.3% of the cases in the reverse-order condition. However, both self-reported ‘GPT conservatives’ and ‘GPT liberals’ showed right-leaning moral foundations. Our results cast doubts on the validity of using LLMs as a general replacement for human participants in the social sciences. Our results also raise concerns that a hypothetical AI-led future may be subject to a diminished diversity of thought.
2024
Science Advances
with Indre Tuminauskaite, Peter S. Park, Rafael V.S. Bastos, Philip E. Tetlock
+ Abstract
Human forecasting accuracy improves through the “wisdom of the crowd” effect, in which aggregated predictions tend to outperform individual ones. Past research suggests that individual large language models (LLMs) tend to underperform compared to human crowd aggregates. We simulate a wisdom of the crowd effect with LLMs. Specifically, we use an ensemble of 12 LLMs to make probabilistic predictions about 31 binary questions, comparing them with those made by 925 human forecasters in a 3-month tournament. We show that the LLM crowd outperforms a no-information benchmark and is statistically indistinguishable from the human crowd. We also observe human-like biases, such as the acquiescence bias. In another study, we find that LLM predictions (of GPT-4 and Claude 2) improve when exposed to the median human prediction, increasing accuracy by 17 to 28%. However, simply averaging human and machine forecasts yields more accurate results. Our findings suggest that LLM predictions can rival the human crowd’s forecasting accuracy through simple aggregation.
2023
arXiv Preprint arXiv:2310.13014
with Peter S. Park
+ Abstract
Accurately predicting the future would be an important milestone in the capabilities of artificial intelligence. However, research on the ability of large language models to provide probabilistic predictions about future events remains nascent. To empirically test this ability, we enrolled OpenAI's state-of-the-art large language model, GPT-4, in a three-month forecasting tournament hosted on the Metaculus platform. The tournament, running from July to October 2023, attracted 843 participants and covered diverse topics including Big Tech, U.S. politics, viral outbreaks, and the Ukraine conflict. Focusing on binary forecasts, we show that GPT-4's probabilistic forecasts are significantly less accurate than the median human-crowd forecasts. We find that GPT-4's forecasts did not significantly differ from the no-information forecasting strategy of assigning a 50% probability to every question. We explore a potential explanation, that GPT-4 might be predisposed to predict probabilities close to the midpoint of the scale, but our data do not support this hypothesis. Overall, we find that GPT-4 significantly underperforms in real-world predictive tasks compared to median human-crowd forecasts. A potential explanation for this underperformance is that in real-world forecasting tournaments, the true answers are genuinely unknown at the time of prediction; unlike in other benchmark tasks like professional exams or time series forecasting, where strong performance may at least partly be due to the answers being memorized from the training data. This makes real-world forecasting tournaments an ideal environment for testing the generalized reasoning and prediction capabilities of artificial intelligence going forward.